
钛合金管、钛板材的生产加工工艺介绍。熔炼与铸锭 钛的熔点高,化学性质活泼,在高温或熔融状态下容易与空气和耐火材料发生作用。钛及钛合金通常在真空或惰性气体保护的气氛下,在水冷或液体金属冷却的铜坩埚内熔铸。目前钛锭生产中应用最为广泛的是真空自耗电极电弧炉熔炼。将一定比例的海绵钛、返回料和合金元素混合均匀后,在液压机上压制成块状(称电极块),再采用等离子焊接方法将电极块焊接成电极(棒),在真空自耗电极电弧炉中经二次重熔成锭。为保证铸锭成分均匀,对加入的合金元素、返回料和海绵钛的粒度均控制在一定范围之内,并采取三次真空重熔。

合金元素对纯钛开始再结晶温度的影响已在前节叙述过了。除铌和钴外,一般常用的合金元素和杂质元素均能提高钛的再结晶温度。测定再结晶主要采用金相观察和X射线衍射相结合的方法。当再结晶发生时,形变后的纤维组织上出现细小的等轴晶粒,同时x射线背反射劳厄图相上的衍射环开始变为不连接的斑点。对于可热处理β合金,还可以用不完全时效(500℃/4~8小时,空冷)的方法显示再结晶组织,经不完全时效后的未再结晶晶粒在腐蚀后呈暗色。经测定,TA2纯钛的开始再结晶温度为550℃左右,TA7钛合金约为600℃,TC4钛合金约为700℃,TB2合金则750℃。

焊接钛管进行辊涨的原则和工艺与无钛缝管是一样的。但是焊珠的存在要求考虑附加的因素,以便确定好的及稳定的辊涨工艺。在这些因素中,重要的是管材的冶金质量及表面状态。例如,希望用退火状态而不是焊接状态的管子,对于管板设计的紧配合连接来说必须避免过分凸出的补径焊珠,事实证明,空气退火的头部带有拋光环的扩口管的结合强度比在光亮退火或光亮应力消除退火状态下扩涨的管子要更好些。另一方面,粗糙的管表面或管板表面可改善机械强度,但密封性差。采用精密机加工或机加工加铰管板孔的方法制造的钛管板孔表面光洁度为0.75-1.5-101,管头拋光环光洁度也达到同一水平,这样强度和密封性就能达到佳配合。

在进行钛合金焊接时,因氩弧焊枪形成的氩气气体保护层只能保护好焊接熔池不受空气的有害作用,而对已凝固而处于高温状态附近的焊缝及其附近区域则无保护作用,而处于这种状态的钛管焊缝及其附近的区域仍有很强的吸收空气中的氮及氧的能力。精细镍合金管随氧化程度逐步加重,钛合金焊缝颜色发生变化及焊缝塑性下降的规律。银白色(无氧化),金黄色(TiO,轻微氧化),蓝色(Ti2O3,氧化稍为严重),灰色(TiO2,氧化严重)。镍合金管厂家钛管及钛合金管焊接时,当焊缝含氧、氮量较高时,随着温度的上升,钛及其合金吸收氢气、氧气和氮气的能力逐渐上升。钛从250℃开始吸氢,从400℃开始吸氧,从600℃开始吸氮。由于钛合金同O2、N2、H2的亲和力高,接头中含有这些气体时会使接头变脆,降低钛合金焊接接头的冲击性能、塑性和韧性。钛合金焊接时,焊接接头产生热裂纹的可能性很小,这是因为钛及钛合金中S、P、C等杂质含量很少,由S、P形成的低熔点共晶在晶界很少生成,加之有效结晶温度区间窄小,钛及钛合金凝固时收缩量小,焊缝金属不会产生热裂纹。

钛及其合金具有很强的化学活泼性,当温度超过400℃时即开始与氧、氮、氢及碳发生反应,高于600℃时反应剧烈。钛管商家浅析而氧、氮、氢及碳含量的增加会导致钛及其合金焊缝金属的脆化,所以TA2钛管焊接时的气体保护是关键问题,同时控制焊缝及热影响区的温度,避免因过热产生粗大晶粒、过热组织,导致金属的机械性能降低。裂纹问题。焊接钛基材料时由于材质的硫、磷杂质含量很少,所以很少会出现热裂纹;但是焊接钛材时很有可能出现冷裂纹且具有延迟现象。主要是由于钛的导热性较差,热量散失慢,容易出现焊缝晶粒粗大;当气体杂质含量较高时,焊接接头的塑性降低,特别是当焊缝中溶解较多的氢时会形成氢脆。

钛管厂家总结钛合金按用途可分为耐热合金、高强合金、耐蚀合金(钛-钼,钛-钯合金等)、低温合金以及特殊功能合金(钛-铁贮氢材料和钛-镍记忆合金)等。钛是一种新型金属,钛的性能与所含碳、氮、氢、氧等杂质含量有关,纯的碘化钛杂质含量不超过0.1%,但其强度低、塑性高。99.5%工业纯钛的性能为:密度ρ=4.5g/cm3,熔点为1725℃,导热系数λ=15.24W/(m.K),抗拉强度σb=539MPa,伸长率δ=25%,断面收缩率ψ=25%,弹性模量E=1.078×105MPa,硬度HB195。钛管从高质量焊缝上来来说必须满足如下几个条件:具有钛管焊接资质的焊工;高纯氩气保护;高纯度的钛合金焊丝;对于拍片现场要求的需要做双面保护,防止根部氧化。